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Finding ways of providing efficient, scalable and robust grid service provisioning is one of the
foundations of next generation grid systems. Recognizing the need for flexible, autonomic, and
self-manageable solutions, we propose a flexible grid service provisioning framework built on a
two layer architecture that promotes a clear separation of concerns. A low-level layer manages
a self-organized peer-to-peer overlay that provides grid membership and fundamental message
exchange mechanisms. The key differentiating factor of the proposed approach is the use of
collaborative bio-inspired algorithm to maintain and optimize the overlay topology in order
to improve communication efficiency, as well as adapting to dynamic network conditions.
Building on these premises, a high-level layer provides grid services such as resource discovery
and monitoring. The proposed solution is evaluated under different scenarios that assess
its qualities concerning performance, adaptiveness, reliability, fault-resilience and network
communication efficiency. Analysis of the obtained results serves as a guideline for the selection
of optimal resource discovery and multicast strategies.

1. Introduction

As high performance computing systems as well as high bandwidth connections
become more common throughout the world, the possibility of exploiting a large
pool of geographically dispersed computational resources has become a reality for
solving complex tasks. Finding ways of managing such systems, thereby making it
possible to efficiently access their resources, is one of the key issues that existing re-
search on grid computing focuses on [1]. In particular, the possibility of discovering
available resources should be considered as an essential factor for a full exploitation
of a grid. The provisioning of efficient, scalable and robust resource discovery ser-
vices becomes therefore a necessity for a successful deployment of next-generation
grid systems. Furthermore, such architectures need to be flexible, autonomic, and
self-manageable, in order to reduce deployment costs, increase reliability, and meet
dynamic users’ needs [2]. These additional goals strongly motivate further research
on emerging and enabling technologies for grids.

Resource discovery in typical grid systems, such as [3–5], is provided by central-
ized indexing services, known as grid resource information services [6] or monitoring
and discovery systems [6]. On one side, centralized solutions enable deterministic
information retrieval with limited bandwidth consumption [7]. On the other side,
this approach limits the scalability of grid systems and represents a communication
bottleneck as well as a single point of failure. A partial solution to this problem is
delivered by hierarchical system designs: the grid is managed by multiple indexing
services, themselves organized as a hierarchy that typically reflects the inherent or-
ganization of grid hosts. At each level of the hierarchy, index services aggregate the
information gathered from lower levels [8]. Search queries are propagated upward
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in the architecture, starting from the lowest level, up to the point that a match
has been found. Although hierarchical information systems improve the scalability
of the grid, the inherent reliability problems of centralized designs remain, albeit
at a smaller scale.

The evolution of distributed systems toward P2P networks gave rise to a multi-
tude of novel solutions that could also be applied to grid systems in order to bring
a significant increase in both flexibility and fault-resilience [9]. There exist different
examples of peer-to-peer based information systems for grids [10–12]. Depending
on the underlying topology and data organization, it is possible to classify these
systems as structured and unstructured.

Structured systems [13, 14] are typically based on deterministic topologies, and
organize the information in a distributed hash table according to a key-node match.
Accordingly, the topology itself encompasses important semantic information en-
abling very efficient and deterministic resource discovery, with low network over-
head and response time. Unfortunately, one of the major drawbacks of hash index-
ing is the fact that it does not inherently support range search and multidimensional
queries. Although these issues have been partially addressed [15, 16], characteristics
of queries and resources in a grid system may nonetheless exacerbate the expected
efficiency of search in structured approaches [17]. Additionally, structured overlays
may not be well suited for dynamic conditions and suffer from excessive churn
rates [18]. Despite these limitations, several projects focus on implementing grid
resource discovery upon structured overlays [19, 20].

On the contrary, unstructured systems [21, 22] do not enforce strict topologies,
and are more tolerant toward nodes joining and leaving the network. Resource
discovery is traditionally performed using flooding mechanisms, by initially post-
ing the query to a local set of nodes and then propagating queries progressively
throughout the network. Flooding allows for free text queries but may suffer from
excessive network communication overhead, unless some structure is introduced in
the overlay (e.g. super-peers [23]), data is replicated across peers [24] or clustered
[25], or optimized flooding strategies are employed [26–28].

The cornerstone of our research has been to enable efficient grid resource discov-
ery on top of an optimized peer-to-peer overlay retaining some of the aforemen-
tioned advantages of both structured and unstructured systems, while overcoming
some of their limitations. In order to achieve the successful integration of grid and
P2P systems, it is nonetheless important to recognize their diverse functional re-
quirements. Accordingly, we propose a flexible and self-managed framework built
on a two layer architecture consisting of a self-organized peer-to-peer overlay and
a grid service provider. Membership management as well as basic group communi-
cation primitives are provided at the overlay level, and provide a solid foundation
to deliver high-level grid services such as resource discovery, load balancing, and
monitoring. Self-organization enables efficient low-level communication by dynam-
ically adapting logical connections between nodes in order to reduce average path
length in the overlay. This optimization of the network is accomplished by means
of a completely decentralized approach based on a collaborative bio-inspired algo-
rithm, and takes full advantage of its inherent adaptive and robust behavior. The
conceptual design of the proposed layered architecture leads to a clear separation
of concerns that hides the complexity of the underlying network and furthermore
facilitates high level access to grid resources.

The rest of this paper is organized as follows: Section 2 presents a brief overview of
search techniques in peer-to-peer networks and examples of grid service provision-
ing architectures based on unstructured peer-to-peer overlays. Section 3 introduces
the middleware architecture, whereas Section 4 details the operation of the network
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communication layer and the overlay management algorithm. Section 5 discusses
the service provisioning layer and the services available to applications. Sections 6
and 7 present the evaluation scenarios, respectively the results obtained. Finally,
Section 8 summarizes the work presented in the paper and provides some insights
to future developments.

2. Related Work

As pointed out in [29], the underlying differences between a grid and a P2P system
make it necessary to consider different performance analysis strategies when solu-
tions devised for the latter are applied on grids. Traditional methods for resource
discovery in P2P systems necessitate adjustments to better fit the design goals of a
grid. In particular, improved query forwarding strategies that are more tailored for
the characteristics and dynamics of grids need to be considered. Grid systems are
typically more stable than P2P networks, as the set of available resources shared
in a grid changes more dynamically, depending on actual scheduling constraints.
Resource discovery in grids is also different than in P2P: searching for a file requires
an exact match, whereas searching for a computing resource mainly involves range
queries.

This section provides a review of state-of-the-art algorithms and techniques that
enable efficient grid service provisioning and communication over P2P overlays.
Because our work deals with a self-structured overlay, a detailed discussion of
structured systems is omitted: the interested reader is referred to [30] for a survey
of additional P2P resource discovery mechanisms.

The underlying concept behind decentralized resource discovery assumes that
the node requesting some resources sends its query to some other known node
(typically its neighbors in the topology). Recipients determine if they can fulfill
the request and eventually respond to the initiating node. If the request cannot be
fulfilled, the query is further forwarded to one or more nodes [31].

According to a taxonomy proposed in [30], search methods for unstructured
networks can be classified as either uninformed or informed. Uninformed search
methods just rely on stochastic or deterministic query forwarding logic: no semantic
information about the query being processed is used during the forwarding process.

The primary uninformed technique for searching in unstructured networks is
flooding [26]. Flooding involves sending the query to all neighbors, and having each
recipient node propagate the query further in the overlay, up to a given distance
specified by a time-to-live (TTL) counter. The performance of simple flooding
protocols is heavily influenced by the topology of the overlay, and it may be difficult
to control the generated traffic (mostly caused by the high number of duplicated
messages) [24]. To limit the traffic explosion, methods like iterative deepening (also
known as expanding ring) or probabilistic flooding [32] can be employed. In iterative
deepening queries are first executed with a small TTL value, and repeated with
increasing TTL if no results are found. With probabilistic flooding, queries are
forwarded only to a small random subset of all neighbors.

Another technique that has been proposed is random walks [24, 33]. Instead of
forwarding a query to all neighbors, at each step only one random path is cho-
sen. A random walk query is commonly called walker : the maximum of steps a
walker can complete determines the depth of the search. Random walks consume
less bandwidth than flooding, but are subject to larger delays [34]. For this reason,
to improve response time several random walks can be started in parallel. Fur-
thermore, combined search techniques employing both flooding and random walks
can be implemented [34]. The efficiency of the these search protocols can be fur-
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ther improved by replicating data across the overlay [35], by avoiding unnecessary
retransmission of data packets, or by clustering information [36].

An alternative approach is to use an informed search method, which relies on
certain heuristics to drive query forwarding. These heuristics are usually based on
previous experience [31, 37, 38], and allow for improved bandwidth usage because
queries are forwarded only to nodes that are more likely to return a positive answer.

Research on resource discovery in unstructured overlays does not only concen-
trate on improved search schemes. Another field of interest focuses on charac-
terizing overlay networks and identifying how topologies influence the efficiency
of resource discovery [39, 40]. Recognizing that some topologies are better suited
for decentralized resource discovery, several projects focused on adding structure
(e.g. super-peers [23]) or reorganizing overlays in an autonomous and adaptive way
[41, 42]. We are particularly interested in the second approach, as our work reflects
the idea of creating a self-structured overlay to improve the efficiency of existing
search methods as well as of other services such as group communication.

In this context, Acquaintances [37], proposes a mechanism for augmenting a
Gnutella-like overlay with additional links based on previous experience. Con-
nections between nodes are created or removed according to the number of positive
responses. Although very similar to informed search approaches, Acquaintances

shows that it is possible to further improve the efficiency of resource discovery
by modifying the overlay topology. Similarly, PROSA [43] builds and maintains
a P2P network based on social relationships and acquired semantic information
about peers.

A further case of exploiting a dynamically adapting topology is P-Grid [44].
P-Grid is also an example of a self-organized system, utilizing a structure similar
to a distributed hash table to index information. The system implements a load
balancing mechanism that ensures fair replication of data across the nodes. On
top of the overlay, self-organizing services such as peer identity management and
trusted communication have been implemented.

A more complex solution is represented by Umm [45], which uses a two layer
architecture separating the tasks of maintaining an overlay and disseminating the
information in an efficient way. Connections between nodes are optimized both to
reduce latency and to increase available bandwidth. Furthermore, Umm utilizes an
optimized query forwarding scheme that tries to avoid message duplication and
consequently restrain traffic overhead.

In the same spirit, Saxons [46], maintains an overlay with low latency, high
bandwidth paths, as well as small distances. The overlay provides efficient multicast
communication across the overlay that can be exploited to deliver higher level
services.

Finally [47] proposes an example of service-oriented framework, SP2A, based
upon a peer-to-peer overlay and focusing on resource sharing in grids.

Our work follows the path traced by the aforementioned approaches, in that
it focuses on constructing and maintaining an optimized overlay that enables the
implementation of efficient higher level services such as resource discovery or mul-
ticast communication. In this respect, the most important contribution of our work
is the use of a collaborative bio-inspired algorithm to manage the overlay.

3. Framework Architecture

The proposed framework architecture, as initially introduced in [48], is composed
of two functional layers: a low-level network communication layer, and a higher
level service provisioning layer (Figure 1).
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This layered architecture establishes a clear separation of concerns regarding
communication between peers and high level grid service provisioning. Accordingly,
the network communication layer is responsible for membership and communica-
tion management, by maintaining proper network connectivity and implementing
basic unicast and multicast mechanisms. Conversely, the grid service provisioning
layer exposes higher-level functionalities such as resource discovery and querying.
This layer is comprised of a Grid Services Provider and an Aggregator component:
the former provides support for simple tasks like resource discovery queries, while
the latter enables complex multi-task queries as well as caching of retrieved results
for improved response time.

Figure 1. Framework Architecture

Applications interface with the upper layer while remaining totally unaware of
the complexity of the network management. Typical interaction between an appli-
cation and the grid service provisioning layer involves submitting resource discovery
queries and retrieving the corresponding results.

The proposed framework is not concerned with scheduling of jobs on remote
nodes nor with actual communication with remote resources: as these tasks typi-
cally depend on complex scheduling and resource access policies, they are left to
the grid application. Consequently, in a grid deployment scenario communication
between applications and the framework will be mediated by a scheduling and
resource management middleware, as proposed in [49].

4. Network Communication Layer

Two tasks are amongst the responsibilities of the network communication layer:
low level connectivity between grid nodes (also known as membership manage-

ment), and support for the exchanging of messages across the overlay. In line with
the aforementioned separation of concerns, this layer is conceptually composed of
two functional components: an overlay management logic, and a communication
services provider. We discuss here the details of both components.

4.1 Overlay Management Logic

The overlay management logic ensures connectivity by maintaining an optimized
overlay with minimal average path length between nodes. The management al-
gorithm, called Bl̊atAnt-S, is an improved version of our previous algorithm
Bl̊atAnt-R [50] that reduces both the complexity and the generated traffic of
the latter, while retaining its performance characteristics. A brief discussion of the
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differences between these two versions of the algorithm is provided at the end of
this section. Bl̊atAnt-S is fully distributed, adaptive in respect to changes in
the underlying network, and fault tolerant. In particular, its functionalities are im-
plemented using different types of lightweight mobile agents traveling across the
network. The behavior of these mobile agents is inspired by swarm intelligence [51].

Swarm intelligence algorithms mimic the behavior of insect colonies in order to
solve optimization problems, such as routing problems in dynamic networks. In
this respect, the proposed overlay management algorithm autonomously organizes
the topology exploiting the synergy of different agents behaving like an ant colony.
For this reason, we refer to agents implemented in our proposed algorithm as ants.

Each node ni on the grid maintains a set of logical neighbors Ni, and a fixed-size
cache table with information about other nodes, such as their estimated distance
and their neighbors. This table is updated using the information carried by incom-
ing ant agents, and provides a local partial view of the network. Furthermore, the
number of neighbors cannot exceed a user-defined limit, to prevent hub formation.

Topology Optimization Rules. According to its own partial information
about the network, each node performs local optimization of its connections by
creating new logical links and removing existing ones. This process is controlled by
two rules exploiting a user defined parameter D, such that the resulting average
path length is between D and 2D − 1.

Connection Rule. Let ni and nj be two non-connected nodes in an overlay
G, and dG(ni, nj) the minimal routing distance from ni to nj in G. A new link
between ni and nj is created if the following condition holds:

d′G(ni, nj) ≥ 2D − 1 (1)

where d′G(x, y) is defined as min(dG(x, y), dG(y, x)), and the logical connection is
created by adding ni to Nj , respectively nj to Ni.

The Connection Rule reduces the average path length between each pair of
nodes to a value less than 2D − 1. Conversely, as the number of connections per
node is bounded, the Disconnection Rule is applied in order to remove links that
are not deemed necessary to achieve the desired average path length.

Disconnection Rule. Let ni and nj be two connected nodes in an overlay
network G, i 6= j. Let G′ ← G \ {ni} and Ni the set of neighbors of ni. Node ni is
disconnected from nj ∈ Ni if:

∃ nk ∈ Ni, k 6= j, |Nj | > |Nk| : d∗G′(nj, nk) + 1 ≤ D (2)

where d∗G(x, y) is defined as max(dG(x, y), dG(y, x)), and the disconnection consists
of removing ni from Nj , respectively nj from Ni.

Proof of Correctness. The presented rules ensure that the average path
length, as well as the diameter (upper bound for all average path lengths), in the
resulting network satisfies the property previously enounced. We now formally
prove that, with a global knowledge and in a finite number of steps, the application
of these rules on an overlay network G leads to an average path length less than
2D − 1.

Lemma 4.1 Convergence of the Connection Rule Let be G0 = G and Gn+1 the
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topology obtained by applying the Connection Rule to Gn for two randomly chosen

nodes. Then ∃ k ≥ 0, ∀ i ≥ 1 : Gk = Gk+i, i.e. ∀ ni, nj ∈ Gk : dGk
(ni, nj) <

2D − 1.

Proof Since the function on the distances resulting from the application of the
Connection Rule is monotonously decreasing, for k big enough, then the result
follows. �

We now prove that creation of a new link by the Connection Rule cannot trigger
the Disconnection Rule, as well as that the Disconnection Rule cannot partition
the overlay.

Lemma 4.2 Monotonicity of Connection Rule Let G′ be an overlay obtained

by applying the Connection Rule to G. Let δ(G)ni,nj
be the condition that the Dis-

connection Rule is applicable in the overlay G for nodes ni, nj . Then

∄ ni, nj ∈ G : δ(G)ni,nj
=⇒ ∄ ni, nj ∈ G

′ : δ(G′)ni,nj

Proof Let (ni, nj), ni, nj ∈ G, the link created by the Connection Rule. Because
dG(ni, nj) has minimal length, the smallest cycle in G′ has a length l ≥ 2D−1+1 =
2D > D. �

Lemma 4.3 Connected Overlay Preservation The Disconnection Rule cannot

partition a connected overlay G.

Proof Let ni, nj , nk ∈ G, such that nj, nk ∈ Ni. If there exists a path between nj

and nk satisfying the condition set by the Disconnection Rule, there are at least two
disjoint paths from ni to both nj and nk in G. Thus, removing a single connection
cannot partition G. �

Corollary 4.4 Convergence of Disconnection Rule Given an overlay G, let

be G0 = G, and Gn+1 the overlay obtained by applying the Disconnection Rule to

Gn for two randomly chosen nodes. Then ∃ k ≥ 0, ∀ l ≥ 1 : Gk = Gk+l.

Theorem 4.5 Given an overlay G, let be G0,0 = G, and Gn,m the overlay ob-

tained by applying, in any order, n times the Connection Rule and m times the

Disconnection Rule on G0,0 for randomly chosen nodes. Then ∃ k ≥ 0,∃ l ≥ 0, and

∄ ni, nj ∈ Gk,l such that the Connection Rule or the Disconnection Rule apply.

Proof Follows directly from Lemmas 4.1, 4.2, 4.3, and Corollary 4.4. �

The presented proof only considers the situation where global and precise infor-
mation about the overlay is available. In a fully distributed scenario each node must
rely on partial and potentially out-of-date information about the overlay. Whereas
degraded information about path distances in the overlay just increase the average
path length and result in a less optimized overlay, concurrent application of the
Disconnection Rule may lead to a partitioning. To ensure that the algorithm works
in a fully distributed scenario a restriction on the Disconnection Rule is introduced:
for each considered cycle, only the node with the greatest identifier (according to
some ordering known to all nodes) is allowed to perform a disconnection. That
node is referred as to the master of a given cycle. We now prove that under this
assumption, even a completely decentralized application of the disconnection rule
cannot partition the overlay.

Lemma 4.6 Safeness of the Disconnection Rule Concurrent application of the

disconnection rule cannot lead to a partitioning of the network.

Proof We first consider the situation where complete knowledge of the overlay is
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available. Because in each cycle only the corresponding master can remove a link,
the concurrency problem is completely avoided and the overlay cannot be par-
titioned. In a fully distributed scenario local information on each node may be
outdated, e.g. refer to cycles that have already been broken. It is thus necessary to
prevent multiple disconnection on the same cycle: this can be achieved by main-
taining a history of detected and broken cycles. This solution has the potential
drawback of requiring a large amount of storage on each master node, especially in
very dynamic networks. Another solution is to only allow a master to remove con-
nections with its own neighbors, thus making it possible to verify whether the cycle
has already been broken by relying only on already available local and up-to-date
information. �

Ant Species. Different tasks of the algorithm are performed using various
species of ant agents. Ants execute on nodes, and each species differs from oth-
ers by the information it carries, and the behavior it triggers on each visited node:

− Discovery Ants wander across the network building up a fixed-size vector v of
visited node identifiers. This information is processed by each visited node to
update the local view and evaluate both the connection and the disconnection
rules.

− Construction-Link Ants carry connection requests from a node wanting to join
the overlay. If the recipient cannot accept the request (because the maximum
number of neighbors has been reached), the ant is forwarded to the neighbor with
the least degree. Construction-Link Ants are also used to recover connectivity
when nodes quit the overlay.

− Optimization-Link Ants perform connections between two nodes as result of the
Connection Rule.

− Unlink Ants disconnect two nodes according to the Disconnection Rule.
− Update Neighbors Ants notify a node when one of its neighbors has updated

its neighbors set. This ensures that each node is able to recover from abrupt
disconnection of a neighbor by connecting with its last known neighbors.

− Ping Ants are used to keep connections between nodes alive.

Discovery Ants are responsible for continuously monitoring the state of the
network, and are thus periodically generated on each node according to a uniform
probability distribution. After a fixed number of hops traveled in the overlay,
Discovery Ants are disposed. In contrast, other species of ants are instantiated as
necessary to fulfill non-repetitive tasks (for example, connecting two nodes). As
the optimization task depends on the information gathered by Discovery Ants,
running the algorithm with an empty population will prevent any improvement of
the topology.

Recovery Procedure. When a node disconnects from the network it has
to inform all of its neighbors and initiate a recovery procedure that will ensure
connectivity is preserved. This procedure involves sending out Construction-Link

Ants to all neighbors and connecting them using a ring topology (Figure 2). In
the event of an abrupt disconnection, this procedure is started by every neighbor
node that detects the failure.

Pheromone Trails. Communication between real ants occurs using a stig-
mergic (i.e. indirect) mechanism which involves leaving chemical pheromone trails
in the environment. These chemical traces can be sensed by other individuals
in the colony and their concentration indicates the desirability of a given path.
With time, unless new chemical is left by an insect, the concentration of the
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Figure 2. Recovery after node ni leaves the network

trail completely evaporates. Evaporation has the added benefit of seamlessly
suppressing errors and overcoming bad system decisions. In our system, we
emulate this phenomenon, and in that respect pheromone concentrations are
represented as numerical values τ ∈ [0, 1] stored on each node. Ants executing
on a node can both read the actual concentration of a trail, and reinforce it by
increasing its value up to a maximum of 1.

Each node periodically simulates evaporation by lowering the value of a trail τ
according to an update function τ ← τ ∗ ψ, and ψ < 1. We distinguish between
incoming β trails, and outgoing γ trails. When an ant travels from node ni to
a neighbor nj, the corresponding trail γi[nj] on ni is reinforced. Conversely,
when the ant arrives on nj , pheromone trail βj [ni] is reinforced. Discovery Ants

wandering around the network preferably chose paths with lower γ pheromone
concentration, ensuring a fair coverage of the network. Furthermore, abrupt
node disconnection can be detected by monitoring the concentration of β trails:
when values approach a lower threshold a recovery procedure is started. If
application traffic is low, the trail between two nodes may not be frequently
reinforced, and thus completely evaporate even though the corresponding nodes
are still connected to the overlay. To prevent this from happening, Ping Ants

are regurarly deployed as soon as trail concentration falls below a certain threshold.

Rules Evaluation. Discovery Ants relay their information vectors v to
each visited node. A node ni receiving a vector v updates the cache table, and
then proceeds by determining if the Disconnection Rule applies. The information
vector is traversed and the distance dv (absolute indices difference) between each
pair of identifiers nj, nz with z 6= j ∧ nj, nz ∈ Ni is computed. If dv < D, a
disconnection procedure is started with the neighbor (either nj or nz) with greater
degree (number of links). To evaluate the Connection Rule, the distances of each
node nz in the local cache table are sorted, and a connection procedure is started
with the node at the greatest distance > 2D − 1. If a connection procedure has
already been started, the following node is chosen.

Comparison to Bl̊atAnt-R. The former version of the presented algo-
rithm, Bl̊atAnt-R, shares many similarities with the presented S version.
Information collected by Discovery Ants is more complete in the R version,
including both the identifier of the node being visited, and the identifiers of its
neighbors. This enables a more complete partial view of the network and a more
precise evaluation of distances by enabling the construction of a partial graph at
the expense of a greater computational complexity and increased network traffic.
In particular, instead of deriving distance estimations from the relative positions
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of identifiers in v, a shortest-path algorithm [52] is used.

4.2 Communication Services Provider

The communication services provider implements basic data packet delivery ser-
vices to grid applications by exploiting the overlay maintained by the network man-
agement layer. Three different message delivery models are implemented: unicast
(point-to-point message transmission), multicast (one-to-many message transmis-
sion), and broadcast (one-to-all message transmission).

Both multicast and broadcast communications are performed using flooding al-
gorithms. With flooding, each received message is forwarded to all neighbors, up
to a pre-defined distance from the initiating node (number of hops in the overlay).
Unrestricted flooding on unstructured network suffers from excessive bandwidth
consumption and is thus inadequate; in particular, redundant paths result in a
large number of unnecessary packet forwardings. To improve the efficiency of the
system, and limit the amount of traffic generated by flooding, probabilistic and lim-
ited flooding strategies may be employed. Probabilistic flooding [32] (also known
as teeming [26]) means that, at each step, the message is forwarded only to a ran-
dom subset of all neighbors. With limited flooding each node avoids forwarding
messages that have already been processed in the past, which implies that nodes
keep track of received messages. Accordingly, broadcast communication is provided
with a best-effort policy: although the depth of flooding can be specified, depending
on the actual overlay topology, only a subset of the nodes may be contacted. The
efficiency of this broadcasting strategy is validated by experimental results which
are presented in Section 7.

4.3 Name Resolution

Communication across the overlay can either refer to precise IP addresses, host-
names that can be translated using an external DNS (Domain Name System) res-
olution service, or application defined logical names. At the lowest level, commu-
nication is always performed using IP addresses. If no prior knowledge is available,
application defined logical name resolution is achieved in a fully distributed manner
by broadcasting a request and waiting for a reply from the concerned host. Each
node may implement a caching mechanism that helps improving the efficiency of
such distributed resolution method.

5. Service Provisioning Layer

The Service Provisioning Layer provides applications with a high-level interface to
the set of resources shared in the grid. The service provisioning layer is not tied to
a single application, and its services may be concurrently accessed by multiple ap-
plications by means of asynchronous message passing and callback notifications. A
similar communication mechanism is used to interact with the overlay management
layer, both to deliver messages on the network, and to receive incoming messages
from other peers. Moreover, the Service Provisioning Layer also exposes commu-
nication services that enable best-effort communication within nodes: this can be
used, for example, to broadcast service messages to individual node administrators.

Amongst the tasks of the service provisioning layer is the processing of high-level
application queries, and their translation to low-level grid messages handled by the
overlay management layer. Application queries mostly involve requests for resources
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in order to distribute computationally intensive jobs, as well as for monitoring
their status. In that respect, resource discovery is supported by broadcast and
multicast communication, whereas resource monitoring typically relies on point-
to-point communication, unless multiple resources are concerned.

Additionally, this layer also provides a mechanism to match incoming queries
from other nodes that are relayed as messages from the lower layer. An Aggregator
component supports the grid services provider in dealing with complex resource
discovery queries, and by providing cached results.

When a high-level query is received by the Grid Service Provider, it is first del-
egated to the Aggregator. The Aggregator component will first dissect complex
queries, that may require the composition of different services, into different sim-
ple queries. For example, to support a load-balancing activity, not only does the
application require a particular resource profile, but also it needs to choose the
best match according to the available bandwidth. In this case, the Aggregator will
decompose the task by first performing a resource discovery, and then profiling the
available bandwidth on the connection to matching nodes. The Aggregator also
helps improving response time by providing cached results from previous resource
discovery queries. The cache is also used to profile searches and detect similarity
between queries in order to issue proactive queries that will enhance results and
reduce latency for popular requests.

If a query cannot be satisfied by cached results from the Aggregator, it is returned
to the Grid Services Provider and a network wide resource discovery is commenced.
Results from this operation will be processed by both the Grid Services Provider,
in order to return them to the application, and by the Aggregator, to update its
cache.

5.1 Resource Profiles

Nodes participating to the grid must publish a profile of available resources to
the Grid Services Provider, in order to enable the matching of queries from the
network. Although there exist different resource profile description languages (for
example JSDL [53], GLUE [54], GRSL [55], etc.), actual implementation of our
framework makes use of a custom dictionary of 〈key, value〉 pairs. Despite its sim-
plicity, this representation mechanism enables both exact key matching as well as
range searches.

6. Evaluation

Our research goal is to provide optimized resource discovery and group commu-
nication to support grid operations. In that respect, we evaluated the proposed
framework in the context of a custom built simulation environment. Different
scenarios were considered, to assess the performance of our system in terms
of scalability, reliability and efficiency. This section details the experimental
configuration of each scenario, as well as the assumptions that we have undertaken
regarding the simulations. It should be noted that the resource discovery and
group communication results presented in this paper have been obtained using
an improved version of the framework presented in [48]. In particular, fine tuning
optimizations were made in the forwarding mechanisms that result in more
efficient flooding.

Simulation Environment. For practical reasons all experiments are run



April 8, 2010 21:30 The International Journal of Parallel, Emergent and Distributed Systems
document

12 Taylor & Francis and I.T. Consultant

in a discrete time simulator; nonetheless the implementation of the system remains
fully distributed. We distinguish two types of timing: a global simulation timing,
and local node timing. Global simulation timing controls the simulation of network
dynamics, such as connection of new nodes to the overlay and disconnections. It
is driven by migrations of the population of ants: at each iteration any ant may
travel at most for one hop in the overlay (migrating from a node towards another
node). On the contrary, local timing on each node depends on a logical timestamp
that is updated according to incoming and outgoing ant traffic: the timestamp is
incremented by one each time an ant arrives on the node, as well as when it leaves.
This timing controls node’s activity such as pheromone evaporation and creation
of Discovery Ants. We assume that communication within the overlay is reliable;
however the transport layer does not ensure a FIFO behavior, as the order of multi-
ple messages originating from the same source node is not guaranteed at recipients.

Communication Costs. To evaluate the amount of traffic generated by
the algorithm, thus determining the resulting network overhead, an estimation of
the size of each data packet used by the framework has been made. In particular,
for the overlay management part, the following estimations have been made:

− Discovery Ant : 420 bytes plus 24 bytes/visited node;
− Construction-link Ant : 444 bytes;
− Optimization-link Ant : 420 bytes;
− Unlink Ant : 420 bytes;
− Update Neighbors Ant : 420 bytes plus 24 bytes/neighbor.
− Ping Ant : 420 bytes;

Concerning the resource discovery and group communication tasks, the size of
queries, replies and messages is considered as follows:

− Resource discovery query : 1024 bytes;
− Resource discovery query reply: 456 bytes;
− Group communication message: 1024 bytes;

All estimations include the actual payload as well as the size of a minimal UDP
packet. A resource discovery query reply is sent to the initiating node for every
match found.

Overlay Management. Unless otherwise specified, in all evaluation scenarios
the main algorithm parameters are kept constant.

The choice of parameter values is based on well established results obtained in
our previous research [50], and will be only briefly discussed here. In this respect, a
sensitivity analysis of the algorithm parameters highlighted that minor variations
do not significantly affect the qualitative behavior of the presented results. The
pheromone decay ratio ψ is set to 0.991: according to our experience, this value
provides an optimal evaporation rate for the considered network dynamics. Each
node generates a new Discovery Ant with a probability of 1% every 150 iterations:
this ant may subsequently travel for at most 50 hops in the overlay. Each Discovery

Ant carries a vector of size 20 with the identifiers of the most recently visited
nodes. The optimization parameter D is set to 5 in all considered evaluation
scenarios: accordingly, the expected average path length in the resulting overlays
is between 5 and 9.

Simulation Scenarios. Different aspects of the framework are evaluated,
such as scalability, reliability and efficiency, and in that respect a variety of
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network simulation scenarios were considered. All topologies are constructed
starting from a pool of 10 nodes (referred to as well-known connection points), to
which a number of additional nodes connect as soon as the simulation starts. To
prevent the emergence of hubs, each node may accept a maximum of 8 connections.
In all scenarios, as soon as the construction phase has been completed, the overlay
size is in the range of 1281 nodes. The only exception is in the expanding network
scenario, used to evaluate the scalability of the overlay, where the number of
nodes is progressively increased from 10 to around 10000 by adding a node every
5 iterations. Within this scenario, the performance of the overlay management
algorithm is also evaluated by varying the Discovery Ants birth probability from
0% (i.e. no optimization), to 1%, and 5%.

To assess the reliability of the overlay as well as the amount of network traffic gen-
erated under typical conditions, a set of dynamic scenarios have been considered.
In these scenarios the overlay is periodically modified by dynamically simulating
addition and removal of nodes following a stochastic Poisson process.

Concerning the reliability of the network, the considered connection and discon-
nection periods are of 20, 50, and 100 iterations. Disconnection of a node is achieved
according to two equiprobable policies: either proper disconnection, where the de-
parting node notifies its neighbors and reconnects them to preserve connectivity, or
abrupt disconnection. Because the average rates of connections and disconnections
are equal, the size of the network is kept almost constant.

By means of a comparative scenario, we also assess the qualities of Bl̊atAnt-S

in respect to its predecessor, Bl̊atAnt-R. In particular, we measured the aver-
age path length for both algorithms in a dynamic network of 1281 nodes with a
connection and disconnection period of 50 iterations.

Finally, to evaluate resource discovery and group communication a dynamic
network scenario with a connection and disconnection period of 25 iterations is
used.

Resource Discovery and Group Communication. The metrics used to
determine the efficiency of resource discovery are the hit rate, as well as the
forwarding strategy costs. In the context of grid systems, resources refer to the
computational capabilities of the nodes themselves, thus the size of the considered
resource pool is equal to the size of the network. The hit rate is defined as the
percentage of successfully discovered resources out of all possible matching ones.
In this respect, we assumed a replication ratio of about 2%, resulting in an average
of 27 replicas for each possible resource shared on the network. Additionally, the
forwarding strategy cost is measured as the total traffic generated by a resource
discovery query based on the aforementioned communication costs.

Resource discovery queries are generated every 25 iterations. A set of 5 queries is
concurrently started on randomly chosen nodes and broadcasted on the network to
search for a resource shared by other nodes. Each query has a limited time-to-live,
travels up to a maximum distance from the starting node in the overlay, and is
transmitted according to a selective forwarding policy.

Different forwarding strategies are evaluated by varying the forwarding distance
(TTL) as well as the maximum number of neighbors to which the query is forwarded
at each step (FW). Once a match is found, a notification is sent to the initiating
node, and the query is not further propagated to neighbors. In line with a limited
flooding approach, forwarding is also stopped when a node receives a query that
has already been processed before. In our evaluations no response time limit was
set for resource discovery queries.
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Figure 3. Average Path Length in Expanding Network

Group communication efficiency is assessed by determining the overall coverage
(percentage of the nodes that received the message) as well as the total number
of message forwardings. Every 25 iterations, messages are generated on 5 random
nodes and multicasted on the network. As with resource discovery queries, we
experimented with different strategies by varying the TTL and FW values.

For both resource discovery and group communication, we were also interested in
evaluating the influence of network dynamics. In particular, for a fixed forwarding
strategy with TTL=9 and FW=4, we experimented with progressively more stable
networks by increasing connection/disconnection periods. Periods of 25, 50, 100,
250, 500, and 1000 iterations have been considered.

7. Results

Having detailed the parameters of the experimental evaluation scenarios, this sec-
tion presents and discusses the obtained results. The first set of results mainly
concerns the overlay management algorithm, whereas the second part concentrates
on the efficiency of high level grid services such as resource discovery and group
communication.

7.1 Scalability in an Expanding Network

Figure 3 shows the average path length in the expanding network scenario. Without
optimizations, the construction protocol is able to keep an average length of 15
hops. In contrast, optimization tasks are able to keep up with the growth of the
network, and bound path lengths in the overlay to values close to 10. Although a
larger population of ants does not seem to improve the result, the number of edges
in the resulting network (having an average of 9500 nodes) is significantly lowered:
in average 46000 with 1%, 39000 with 5%, and 21000 without optimization.
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Figure 4. Reliability in Dynamic Scenarios

7.2 Reliability and Traffic Estimation in Dynamic Scenarios

Overlay reliability results aim at assessing the ability of the network to control
dynamic conditions with high connection and disconnection rates. As shown in
Figure 4, the algorithm is able to maintain an average path length close to 8.6 hops
with rates of 50 and 100 iterations, and of 10 hops with 20 iterations. Although not
shown in the figure, in all scenarios the network remains fully connected, confirming
that the adopted recovery strategy is able to cope with abrupt disconnections.

After the initial construction phase, the average number of edges in the overlay is
6700. With a join-leave period of 50 iterations, according to packet size estimations
provided in the previous section, at each iteration the algorithm generates a total
average traffic of 20 kbytes, which results in a bandwidth consumption of about 3
bytes per link.

7.3 Comparison between Bl̊atAnt-S and Bl̊atAnt-R

Figure 5 illustrates how Bl̊atAnt-S obtains better results than Bl̊atAnt-R. In
particular, the S version is able to better cope with the dynamics of the network,
and maintains an average path close to 2D − 1 = 9. The R version also generates
more traffic, with about 25 kbytes per iteration: this difference is easily explained
by the increased size of the Discovery Ants due to the additional neighbors’ infor-
mation.

7.4 Resource Discovery Efficiency

Resource discovery efficiency is evaluated both in respect of the success rate of
single queries, as well as the traffic generated by the forwarding algorithm. Figure
6 shows the results of different forwarding strategies, with varying TTL and FW,
concerning the average cost and success rate of one query. The histograms detail
both the cost of maintaining the overlay (averaged for a rate of 5 queries every 25
iterations, for a total of 10000 queries) and the actual resource discovery query cost.
Clearly, better result can be obtained at the expense of generating more traffic; it
is nonetheless interesting to note how the difference between FW=6 and FW=8 is
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Figure 5. Average Path Length Comparison

limited: this is an outcome of the fact that most of the nodes have a degree less than
8. Results also show that the overlay management only counts for a negligible part
of the traffic. A more detailed analysis of the results also showed that increasing
the query traffic makes the overlay management even more efficient because less
Ping Ants are needed.

Figure 7 shows group communication cost and performance. The best coverage
(98% of an average of 1260 nodes) is obtained with a TTL of 9 and FW equal to
8, with an average of 5170 forwardings. It is interesting to note how the 9/6 sce-
nario obtains similar coverage (98%) with slightly less forwardings: as for resource
discovery, because the average number of neighbors per node is between 5 and 6,
increasing the FW value does not provide significant advantages.

By taking into consideration the assumed size of queries and messages (1024
bytes), the results of the different forwarding strategies used by resource discovery
and group communication become clear; respectively, queries are stopped as soon as
a match is found, whereas messages are not. For the same TTL and FW parameters
values, resource discovery thus produces in average 200 kbytes of traffic less than
group communication.

7.5 Network Dynamics Influence

As illustrated in Figures 8 and 9, both resource discovery and group communication
efficiency are affected by the rate of connections and disconnections in the overlay.
As expected, the resource discovery hit rate as well as the group communication
coverage increase in more stable scenarios. On the other side, although the overlay
management related traffic decreases with larger connection/disconnection periods
(scenarios of 50 and 100 iterations), the overall traffic increases: as the network
managing algorithm is able to further optimize the average path length, more
nodes are contacted within the 9 hops radius, thus more messages are transmitted.
Nonetheless, it is interesting to note that in even more stable networks (250, 500
and 1000 iterations) the optimization process is more effective in that it has time
to remove additional redundant links, resulting in less bandwidth being consumed.
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Figure 6. Resource Discovery Efficiency

Figure 7. Group Communication Efficiency

8. Conclusions

A fundamental milestone in the path towards next-generation grids is the deploy-
ment of flexible, autonomic, and self-manageable solutions for efficient, scalable
and robust grid service provisioning. In accordance with this vision, we introduced
a framework for grid service provisioning composed of two functional layers: a
self-organized peer-to-peer overlay management layer, and a grid services interface
layer. The proposed architecture promotes a clear separation of concerns: network
communication and membership are managed at the lower level, whereas grid ser-
vices are provided by the higher level.

The major novelty of this work is introduced within the overlay management
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Figure 8. Network Dynamics Influence on Resource Discovery (9/4 Scenario)

Figure 9. Network Dynamics Influence on Group Communication (9/4 Scenario)

layer, which relies on a collaborative bio-inspired algorithm to maintain an op-
timized topology and constitutes an efficient communication platform. Different
types of mobile software agents, whose behavior is inspired by insect colonies, col-
laborate in a fully distributed way to bound the distance between each pair of
nodes, by means of creating additional links and rearranging existing ones. The
adopted solution provides an adaptive, reliable and robust communication plat-
form to connect grid nodes and ensure efficient operation of the grid.

The upper service provisioning layer hides the complexity of the network by
providing grid applications with an interface to the resources shared on the grid.
In particular, the layer delivers grid resource discovery and monitoring, as well as
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best-effort multicast group communication.
Different evaluation scenarios were considered and experiments demonstrated

the qualities of the framework. In particular, the adaptiveness, scalability and fault
resiliency of the overlay management was proved. The constructed overlay is able
to cope with dynamic networks and faulty nodes, as well as to optimally reorganize
connections in order to bound the average path length. Furthermore, simulations of
both the resource discovery and the group communication services demonstrated
the suitability of our solution for solving grid tasks.

Future work focuses on the integration of additional techniques to improve the
efficiency of the resource discovery process [56], as well as the inclusion of this
framework within the overall SmartGrid [49] platform.
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