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2 2 RELATED WORK

Abstract

Real-time data processing frameworks are concerned with continuous flows of information
which need to be processed as fast as possible. In order to cope with large amounts of data,
parallel and distributed solutions are employed to partition the processing task and execute anal-
ysis and transformation steps on multiple threads or on a multitude of computing devices. In this
regard we introduce Poma, a lightweight framework for parallel and distributed processing using
modular pipelines of composable modules, which provides both a development kit and a simple
job management middleware for distributed operation.

1 Introduction

Processing and analyzing information in the realm of big data and the internet of things introduces
several computational challenges related to the number of sources and the variety and velocity of
information [1]. Stream processing [2] tackles the problem of continuously analyzing and transform-
ing big amounts of data as fast as possible (possibly in real-time) using different computing nodes.
In contrast to dedicated high performance computing systems, distributed stream processing frame-
works can be easily deployed on a variety of computing devices, even embedded platforms (such
as the NVIDIA Jetson®) or off-the-shelf commodity hardware. These technologies are thus suitable
for a multitude of problems where horizontal scalability is preferred over a vertical approach. [3],
both for large scale big data processing as well as in more marginal scenarios. In this regard, we
introduce a novel middleware and framework which aims at providing a lightweight solution for imple-
menting parallel and distributed data processing systems. Our focus is on modularity and flexibility
through composability: computational tasks are divided into multiple steps and implemented as dy-
namic modules which can be rearranged depending on the available resources and the deployment
scenario.

2 Related work

Nowadays there exist several frameworks and systems for supporting distributed processing of real-
time data. The most influential research and development activities take place in the field of big
data analytics, hence this brief review of other works related to our project will first pay attention
to this area. The most known distributed computing framework is probably Apache Hadoop [4],
which implements the MapReduce programming paradigm and supports parallel batch processing
of large amounts of data, typically stored on a distributed filesystem. Unfortunately, this approach
is not suited for real-time stream processing and for low-latency applications. In particular, with
MapReduce each processing step stores its (intermediate) result on the distributed storage, wors-
ening the overall computing performance. Higher throughputs can be achieved by performing all the
processing in-memory, as implemented by Apache Spark [5]. To overcome the limitations of batch
processing alternative solutions have also been developed over the years. Apache Flink[6] provides
a framework for unified batch and stream processing, with low latency and high throughput. Apache
Storm [7] is a cluster solution which allows for processing unbounded streams of data. Similarly
Apache Kafka Streams # handles real-time data feeds using Kafka [8] as messaging layer. These
platforms can be used to build robust applications to transform information or react to events, how-
ever the downside resides in their complexity and relatively large footprint. In contrast, the framework

3http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
*https://kafka.apache.org/documentation/streams/
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presented in this paper provides a lightweight solution for parallel and distributed processing, draw-
ing inspiration from the pipeline concept, which is also used in specific solutions such as GStreamer
[9].

3 Poma Framework Concepts

Poma is a framework for building data processing pipelines made of composable modules, as well
as a lightweight middleware to support distributed execution (Figure 1). The framework and all
supporting tools are written in C++ and only depend on Boost °> and ZeroMQ ©. The source code
of the framework’ is released under a 3-Clause BSD license. Pipelines are configured by means of
JSON files which describe data flow graphs: these files are loaded by a component called Loader
which instantiates the required modules and starts executing the pipeline. In a distributed setup, a
Deploy tool is used to partition the pipeline and submit JSON configurations to a Service component
installed on each node: the latter subsequently starts a Loader to manage the execution of a portion
of the pipeline. The Service component acts as a job manager, allowing for multiple pipelines to be
executed concurrently on the same machine. The Loader also comes as library which can be linked
to other programs.

3.1 Data processing modules

Pipelines describe a data processing flow composed of dynamically loadable modules written in
C++. Each module implements a procedure used to react to incoming data and eventually submit
processing results to other modules down the pipeline. Data exchanged between modules is orga-
nized into packets, which contains a JSON metadata tree and a custom payload whose type can
be freely defined by the user (for example, for video processing purposes the payload might be an
image). The data flow (path of each packet) is determined by links between modules, which are
described in the pipeline configuration file. To allow for dynamic routing of data packets, each link is
associated with a named channel: depending on the behavior of each module, data packets can be
send to distinct channels, allowing for different processing tasks to be carried out.

3.2 Graphical data flow editor

To support the creation and editing of data flows we provide a simple graphical tool (Figure 2) which
enables the user to compose pipelines by dragging and dropping objects on a canvas. The editor
relies on a dynamically generated file to obtain a list of all existing modules and their configuration
options, hence additional components developed by the user are seamlessly integrated.

3.3 Parallel execution

By default each pipeline operates in a synchronous way: when a data packet is forwarded to another
node the sender remains blocked until the processing task has been completed, introducing large
latencies. In order to process data in an asynchronous way, the user can employ Buffer modules
at different stages of the data flow: buffers free the sender as soon as a packet has been queued.
Dividing the pipeline into different parts by means of buffers achieves a primitive form of parallel
execution, which is commonly referred to as pipelining, since each part is executed in a different

Shttp://www.boost.org/
Shttp:/zeroma.org/
"https://github.com/slashdotted/PomaPure
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Figure 1: Overview of the framework
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Figure 2: Graphical tool for editing the data flow

thread. Specific sections of a pipeline can also be executed on multiple threads by means of the
ParExecutor and the Joiner modules, which implement the fork-join paradigm. Finally, if the data
to be processed originates from several source modules it is possible to assign each of them to a
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different thread using a ParProcessor module.

3.4 Distributed execution

Poma also supports distributed execution of a pipeline, for example on a cluster of computing de-
vices. Each node requires the Service and Loader components and dynamically loadable modules
used by the pipeline. Data communication between modules on different machines relies on ZeroMQ
and is mainly transparent to the user: only serialization and deserialization procedures suitable for
the data type contained into each packet need to be implemented. Assigning sections of a pipeline
to a different machine is achieved by setting an host attribute in the pipeline configuration file. One
of the hosts is used to deploy and control the distributed pipeline.

4 Conclusion and future work

In this paper we presented Poma, a framework for real-time parallel and distributed data processing.
In contrast to other processing frameworks, Poma is a lightweight customizable solution suitable for
embedded computing devices. Processing is performed by dynamically loadable modules, whereas
data flows are defined through simple JSON files which can be created and edited using a graphical
tool. A real world deployment of Poma is currently carried out in the context of an automated video
surveillance platform. Future work includes the development of profiling tools and the implementa-
tion of secure data transmission for distributed deployments.
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